skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mama, Kyrus R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The learning and recognition of object features from unregulated input has been a longstanding challenge for artificial intelligence systems. Brains, on the other hand, are adept at learning stable sensory representations given noisy observations, a capacity mediated by a cascade of signal conditioning steps informed by domain knowledge. The olfactory system, in particular, solves a source separation and denoising problem compounded by concentration variability, environmental interference, and unpredictably correlated sensor affinities using a plastic network that requires statistically well-behaved input. We present a data-blind neuromorphic signal conditioning strategy, based on the biological system architecture, that normalizes and quantizes analog data into spike-phase representations, thereby transforming uncontrolled sensory input into a regular form with minimal information loss. Normalized input is delivered to a column of spiking principal neurons via heterogeneous synaptic weights; this gain diversification strategy regularizes neuronal utilization, yoking total activity to the network’s operating range and rendering internal representations robust to uncontrolled open-set stimulus variance. To dynamically optimize resource utilization while balancing activity regularization and resolution, we supplement this mechanism with a data-aware calibration strategy in which the range and density of the quantization weights adapt to accumulated input statistics. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026